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ABSTRACT: 
 
The popularisation of photography as a documentary basis in the field of architectural and archaeological heritage recording, 
sustained by the development of  more and more powerful computers and easy-to-use software tools, has brought as a consequence 
the popularisation of Photogrammetry. 
Simultaneously its happening the explosion of a technology phenomenon with positive and negative effects: The digital camera. Day 
by day they are becoming more capable, with higher resolution, smaller and cheaper. They are, without any doubt, the unavoidable 
successors of film cameras at any level. 
The new image sensors are being vastly and unceasingly improved. The professional branch evolves in the sense of raising the sizes 
up to the standard 36 x 24 mm with resolutions of over 10 Mpix, nearly able to fit into the usual SLR bodies but sadly by now at 
very high prizes. At the same time, in the consumer market, the  sensors are  being improved and becoming cheaper  at sizes of 
about 1cm. For these, very small lens groups are needed, and for them almost microscopic focus mechanisms. This implies that high 
geometric image quality is very difficult to achieve.  
Even the best semi-professional digital cameras show very noticeable lens distortion and the images need to be corrected and thus 
resampled in order to have all of their potential benefits in the photogrammetric usage and particularly if they are taken for 
rectification purposes. 
The lens geometric distortion effects and their relation with the various mathematic expressions used for its characterisation, seems 
often too abstract for non-skilled users or better, for users that have not specific background in Optics, or Photogrammetry. For this 
reason, we have developed an application that is called LDS (by means of Lens Distortion Simulator) that we present as a tool for 
experimentation, simulation and correction of the lens geometric distortions in digital imagery. It is particularly oriented to academic 
scenarios and, in a more general point sense, to users and professional of Photogrammetry. 
 

1. INTRODUCTION 

The progressive computerization of technologies, particularly 
since 1996, when digital photogrammetric workstations became 
well-settled, and with the boom of the World Wide Web, have 
given rise to the popularisation of Photogrammetry. 
We consider that this trend finds its raison d'être and its better 
development space within the CIPA context. Lets highlight 
several facts that particularly sustain this appreciation.  
• The use of sensors that are more powerful and affordable 

day by day and thus well-suited for heritage recording 
purposes. (WG7). 

• The development and improvement of surveying methods 
that, with different accuracy and efficiency levels, have 
been applied to diverse fields embracing as different 
subjects as satellite imagery and tactile methods (WG3, 
WG6). 

• The availability of  data processing tools have became 
more open, hybrid and less classic day by day : Today’s 
photogrammetric software tends to keep the General 
Method (that stands for the classic scheme of inner–
relative–absolute orientations) away from the user and 
dissolved by the implementation of userfriendly 
interfaces. The same happens whith image processing and 

computer graphics (CAD) which are becoming more 
effective to render heritage objects (WG3,WG4). 

• The creation of meeting and discussion forums where 
different specialists can converge (bridge the gap) to a 
common objective (WG1,WG2). 

• The explicit impulse given to the “Photogrammetry for 
everyone”, which is best represented by proposals such as 
the “3x3 rules” (1988 Brunner-Waldhäusl) that helps non-
specialized people to get involved in heritage recording. 
(TG1). 

• The progressive rapprochement  to photogrammetric 
concepts by an increasing number of people, thanks to the 
development of e-learning tools and the generalised 
Internet access. 

• The constant development of  new applications to suit 
specific objectives is being possible thanks to the 
availability of easy to use and learn object oriented 
programming languages. These have allowed the user to 
customize his workspace and tools for each need. 

 
Within this panorama, our professional and teaching experience 
brings us many times to ask ourselves one question: Under what 
circumstances could we make use of non- calibrated cameras 
for heritage recording purposes?. 



 

In this paper we want to focus on three aspects concerning this 
question: 
 
1. How do we manage with the high degree of geometric 

distortions (particularly the radial symmetric distortion) 
when we apply direct image resampling techniques such as 
rectification? 

2. How will we set up internal camera parameters including 
those related to lens distortions when we make use of 
different programs? And being more specific, how will we 
manage all the different mathematic schemes that are 
involved in the description of the same phenomenon?  

3. In case of being the distortion well-known, what is the most 
efficient way of working? Should be a good practice to 
eliminate it as a first stage by image re-sampling prior to 
any further process such as re-projection or restitution? Or 
would it be better to have it mathematically modelled doing 
the re-sampling as a unique stage that maps for instance 
distortion and rectification at the same. 

It is obvious that, nowadays, we are more focused on a certain 
type of cameras, those that have been leading the reconciliation 
of non-skilled people and Photogrammetry. In a general sense, 
the boom of this science as a powerful instrument for heritage 
recording has been made possible thanks to the irruption of 
digital cameras on the scene. 
  

2. INTRODUCING “LDS” 

Lens Distortion Simulator is a computer application that will 
bring some light to some points that are often found obscure by 
many users, and particularly by students when they face this 
question. The following lines will act as a review of some key 
points. We will just focus on the radial symmetric distortion and 
not so much on the tangential and asymmetric due to the higher 
dimensional magnitude and conceptual importance of the first 
one as it affects the principal distance concept. For this reason, 
only radial distortion simulation is being implemented with the 
main purpose of simulating its consequences on images; this is 
something that we consider very didactic. On the other hand, it 
will allow to know which range applies to those parameters and 
at what levels they have noticeable effects. 

 
Figure 1.  The simple fact. 

 
In the classic Optics language, as shows the figure 1, the 
distortion is defined as the inconstancy of lateral magnification. 
But even if the classic definition is easy to learn, as it explains 
the differences in terms of point image-coordinates between 
real and theoretical locations (those  resulting from the 

perspective laws compliance), the complexity comes from the 
diverse ways of expression of this difference sometimes as an 
error and sometimes as a correction. (It depends on authoring). 
These displacements, that can be easily understood, become 
hard, dense and opaque when the user finds that different 
programs use different nomenclature and parameterisation. As a 
result sometimes the user finds expressions of error while in 
others terms of corrections. But all definitions are in fact the 
same; all models define the displacement of points from their 
bundle perspective rules compliant positions, but using different 
notation to this same fact. 
 

3. THE CONCEPT OF RADIAL SYMMETRIC 
DISTORTION. 

It is important to take into consideration that the concept of 
radial distortion itself does not offer a clear  panorama at all, at 
least from a didactic point of view 
Many authors such as Bonneval, Ghosh, Moffit, or Mikhail, 
define radial distortion as the deviation of light rays during lens 
crossing. 
It seems that such definition comes from the didactic need of 
making the model fit into a perfect projective scheme where the 
projection centre can be exactly located in a certain point (like 
pinhole camera), or instead of this, it could also be considering 
the nodal image point being equally well-located and 
determinable. 
In this way, the lense’s radial distortion is measured as a 
distance or separation (along radial directions contained in the 
image plane) between the actual positions and their ideal 
corresponding ones. So that an ideal ray trajectory and its 
resulting image spot are exactly determined by the value of the 
principal distance (f) and the incidence angle (α). 

 
Figure 2. Scheme of ray deviation. 

 
Under such assumptions, the radial distortion is expressed in 
terms of residuals or errors: actual position – theoretical 
position. 
 

  
[1] 

 
 
This expression of “error” gives us the sign criterion: It will be 
considered positive the outgoing way and negative the opposite 
one. We can see its results in the following figure: The red 
figure corresponds to a positive distorted image (“pincushion”) 
of a perfect square shape, while the blue one results from a 
negative distortion (“barrel”). 

f*tanαrrrdr −=−= '



 

 
Fig. 3. Barrel (blue) and pincusion (red). 

 
This formulation could make the student think of “principal 
distance” as an invariable parameter. The great importance 
given to the focal length inside the photogrammetry context 
contributes to increase this risk. The focal length plays, without 
any doubt, a leading role not only in mathematic models such as 
co-linearity condition or co-planarity, but also during setting up 
of a stereoplotter and in photogrammetric projects planning. 
The high accuracy that, as it is assumed, underlies in a 
calibration certificate (in which principal distance is usually 
expressed in a magnitude order of microns) highlights the pre-
eminence of focal length as the most basic parameter in 
Photogrammetry. 
 
But being true that the principal length value must be unique, 
one must notice that this parameter is directly correlated to 
other parameters and together they define the internal 
characteristics  of the camera, so that a change or lock of 
anyone of them must have effects on the others. 
 
The problem, as we all known, is that while one can observe 
and thus measure the value  of the incidence angle (alpha) and 
the radial distance resulting from it (r), it is impossible to 
measure the principal distance. On the contrary, we infer the 
knowledge of the principal length from what we want to know: 
the radial distortion that has already been defined as a function 
of the same distance. So nothing is that well-defined. 
 
The principal length is the distance between the image nodal 
point and the image plane which is located in a certain point 
where both the actual and the theoretical image-points are the 
same. But, in fact, we can’t neither know at what distance that 
occurs (where radial distortion is null), nor find it useful in 
operative terms. In any case an additional criterion is needed. 
As Brown says there are three possibilities. 

a) We can assume that the principal distance makes null 
the radial distortion at a fixed radial distance R0 
b) We can solve for a principal distance that makes 
minimum the summation of squares of deviations. 
c) Or we can search for the principal length that makes 
equal absolute values of maximum and minimum 
deviation. 

Another way of talking about radial distortion has been used by 
Albertz, Kraus or Burnside. For them, the radial distortion can 
be considered as the variation of the principal distance, as a 
function of the incidence angle of rays (we do prefer this 
version due to its didactic value). This distance should be given 
as a nominal value by the calibrator so the assumption of a 
fixed physical dimension is better avoided. In this way it is 
understood that this parameter depends on a predefined 

specification and gives as a result an specific distribution of 
radial distortion values. 
 
Following Hallert’s notation  

 
[2] 

 
that we rather prefer instead of  the more commonly seen: 

 
[3] 

 
Even when the nodal point actually exists, and in the image 
plane there is a certain region of points that are perspective 
rules compliant, it is useless to search for their position. The 
reason of this is that any elected value of the principal distance 
is a good choice if it is taken into account that the discrepancy 
the actual principal distance and the preset one. This 
discrepancy brings on a certain distribution of the displacement 
(∆r) of every image point from its ideal radius (r’) as a 
consequence. 
 

 
[4] 

 
 

 
Figure 4. Scheme of interdependence between f and dr. 

 
From a practical point of view, there is no need to use the 
concept of “true principal distance”, but to know the diverse 
distribution of radial distortion (dr1, dr2, ... dri) associated to 
their corresponding focal lengths (f’1, f’2, ... f’i) as functions of 
incidence angle. 
 

 
[5] 

 
 
What we pretend to show is that a given physical point always 
has the same image point, associated with a residual that 
function of its distance to the principal point (best symmetry 
point). In other words: for a certain object point coordinates, 
there only exists a unique pair of image coordinates which 
corresponds to it (orientations are supposed fixed) but  there are 
virtually infinite combinations of principal length and distortion 
that make colinearity condition complied. 
 
The application that we have developed offers a workspace in 
which the user can simulate the effects of radial distortion on a 
test pattern, seeing its connection with the focal length. It 
emulates in someway a multi-collimator; a grid of points project 
light rays through a virtual lens (the lens axis is supposed to be 
normal to the grid plane or w = f = 0). Fig. 5. 
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Figure 5. The grid simulates a collimator. 
 
The mathematic model is as follows: 
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[6] 
 
where the following is assumed. 
 

 
[7] 

 
 

 
where the coordinates (X,Y)I of the grid nodes being ZI . So that 
the model can be written as below: 
 
 

 
 

 
[8] 

 
 
 
 
 
 

where (xi, yi) are image coordinates affected by radial 
distortion. 
Once the expressions of the image coordinates have been 
isolated, it is seen that in both right side terms there are 
unknowns: the distorted coordinates. As long as we have set up 
perfect coordinates as a starting for simulating their distortions, 
it is needed to use an iterative strategy to evaluate that system. 
The user is allowed to modify the four basic parameters (a1, a2, 
a3, f) and evaluate the effect of their changes. It’s also possible 
to arrange a grid of image points just simulating any taken 

picture, and see how distortion distribution changes according 
to the f variations set by user. 
 

 
Figure 6. LDS’s user interface. 

 
The effects of related variations are graphically shown and will 
help the user to understand the distortions appearing on images. 
 

4. RADIAL DISTORTION MODELS. 

We have already pointed out to some difficulties concernig this 
problem. In fact, there is not a unique model to explain the 
relationship between the radius and the radial displacement.   
 
Distortion correction: 

[9] 
 

Radial distortion value: 
[10] 

 
1. Brown’s model: 
 

[11] 
  

2. USGS’s model: 
 

[12] 
 

3. ISPRS’s model: 
 

[13] 
 

Notice that the third one can easily be identified with the 
USGS’s if the following is assumed: 

[14] 
 

As it is said before, while the distorted model remains the same, 
any change in focal length brings about a new distortion scheme 
(distribution) and also new coefficients (ai) as a consequence: 
 

 
[15] 

 
 

In LDS special attention has been paid to the comparison 
between Gaussian model of distortion correction versus that so 
called balanced one (ISPRS) due to the meaning of the last one. 
 
Lets reformulate the first expression above to avoid the 
confusion caused by the use of the same letters for the 
coefficients: 
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[16] 
 
 

On the other hand. 
[17] 

 
 

that is equivalent to 
[18] 

 
 
See in the figure 7, how the line ∆r= a0r serves to have the plot 
of 

[19] 
 
 

in the form of  this one: 
 

[20] 
 

The slope could be freely chosen in order to fit some needs, as 
it is for instance, to have the values of distortion arranged in a 
weight-balanced distribution. (equal areas of positive and 
negative distortion values or equal maximum and minimum).  
At the second zero of the curve (see the expression above) we 
can write a0 = - a1r0

2 - a2r0
4     

 
So the same expression could be rewritten as follows: 
 
∆r= (- a1r0

2- a2r0
4 ) r + a1r3+ a2r5 = a1r (r2 - r0

2) + a2r (r4 - r0
4) 

[21] 
 

Then, lets call the principal distance corresponding to the 
Gaussian graph fg 

 
[22] 

 
and fb the same referred to the balanced form: 
 

[23] 
 

Lets notice that both families must comply the same relations. 
 

[24] 
 
 

 

 
Figure 7. Radius / Distortion graph. 

 
Therefore: 
 

 
[25] 

 
 
 

that brings us 
to conclude that:  

 
 

[26] 
 
 

 
Our simulator allows the user to see how the Gaussian and 
balanced forms are related one to each other, showing 
equivalences between all the implied parameters in real time.. 
 

 
 

Figure 8. LDS’s Distortion graphing intergace. 
 

5. SIMULATION RESULTS. 

Once arranged all the mathematic models, we have tried various 
settings for testing several inner orientations for virtual 
cameras. After that, we have rendered the results to three-
dimensional graphic outputs with the purpose of being of help 
for users to understand the models. (These plottings  have  been 
created with Mathlab®) 
The figures below are 2d and 3d plots representing a typical 
distortion distribution. Colour gradation enables a better 
visualisation of the shape and can also be intentionally set up to 
highlight zones where distortion surpasses usable levels. 
 
 

 
Figure 9. Distortion curve report. 
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Figure 10. Three-dimensional distortion plot. 

 

 
Figure 11. Distortion colour map. 

 
We could simulate as well the effect of distortion over a point 
pattern. That will make us feel familiar to the resulting scheme 
of distortion with regard to the sign and magnitude of the 
parameters that come into play. 
 

 
Fig. 12. Distorted grid and Ms-Excel ®  Plot. 

 
With the same purpose of making further analysis easy, the user 
is allowed to copy any of the numerical results as single data o 
as tables as well, so that it can be, for instance, pasted in a 
worksheet. 

 
One of the goals of LDS is to allow us to test any set of 
parameters over an image to resample it and save as a new one 
showing the desired distortion, this feature will be useful to get 
ortho-scopic images (distortion free images) if the lens 
parameterisation is already known. 
 

 
Fig. 13. Mariana. (original picture) 

 
 

 
Fig. 14. She again. (corrected picture) 

 
One more possible application of LDS could be the creation of 
pure distorted images from a virtual scene drafted within a 
CAD program. these images processed by LDS can emulate a 
perfectly distorted photograph, and thus serve as test-dummies 
for other photogrammetric software development (such as 
stereo digitizers) saved from errors derived from badly 
calibrated cameras. 
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